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REPORT

A Bayesian Approach to Copy-Number–Polymorphism Analysis
in Nuclear Pedigrees
Konstantina Kosta, Ian Sabroe, Jonathan Göke, Robert J. Nibbs, John Tsanakas,
Moira K. Whyte, and M. Dawn Teare

Segmental copy-number polymorphisms (CNPs) represent a significant component of human genetic variation and are
likely to contribute to disease susceptibility. These potentially multiallelic and highly polymorphic systems present new
challenges to family-based genetic-analysis tools that commonly assume codominant markers and allow for no genotyping
error. The copy-number quantitation (CNP phenotype) represents the total number of segmental copies present in an
individual and provides a means to infer, rather than to observe, the underlying allele segregation. We present an
integrated approach to meet these challenges, in the form of a graphical model in which we infer the underlying CNP
phenotype from the (single or replicate) quantitative measure within the analysis while assuming an allele-based system
segregating through the pedigree. This approach can be readily applied to the study of any form of genetic measure, and
the construction permits extension to a wide variety of hypothesis tests. We have implemented the basic model for use
with nuclear families, and we illustrate its application through an analysis of the CNP located in gene CCL3L1 in 201
families with asthma.
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Evidence that segmental copy-number variants (CNVs)
represent a significant portion of human genetic variation
is accumulating.1 A CNV is generally defined as a segment
of DNA 11 kb and present at variable copy number when
compared with a reference genome.1,2 More than 6,000
such CNVs have been reported (Database of Genomic
Variants), and recent genomewide studies estimate that
thousands of CNVs exist in the human genome.1,3 It is
likely that these variants lead to phenotypic variation and
modification of disease risk through gene-dose or position
effects.2,4,5

Redon et al.2 showed that the presence of CNVs is as-
sociated with low call rates in SNPs; hence, CNVs tend to
occur in regions with low densities of validated SNPs. This
is likely to be due in part to the diploid-genome assump-
tion being effectively violated in these CNV regions. The
accurate assignment of the copy number (integer count)
in an individual will present new challenges to assays,6

and proposals to use quantitative SNP genotypes to infer
CNVs will require more-refined calling algorithms.2 Ac-
curate quantification of counts of CNV repeats, which can
be thought of as allele sizes, is not yet routinely possible;
most technologies are able to quantify only the total phe-
notype or the sum of all alleles detected. CNVs seen in at
least 1% of the population are termed copy-number poly-
morphisms (CNPs) and are good candidates for disease-
risk modifiers. Consideration of these polymorphisms in
case-control association studies requires no specialized
methods, and, when sufficient evidence has accumulated,

candidate loci can be further studied and characterized in
population-based family studies.7 In the family-based con-
text, however, the underlying allelic segregation must be
inferred from the CNP phenotypes. Although some tra-
ditional segregation and linkage analysis tools, such as PAP
and LINKAGE, allow genotypes to be inferred from ob-
served phenotype classes, more-recently developed meth-
ods aimed at genetic linkage or candidate-gene analysis
cannot handle this type of data, since they assume co-
dominant markers. Many CNPs behave as multiallelic sys-
tems,2 and this may lead to nonnegligible error when in-
tegers are assigned from quantitative CNP assays. This
makes it desirable to develop a method that models the
relationship between CNP phenotype and genotype and
allows for the CNP phenotype assignment to occur within
the statistical segregation analysis itself.

We present a Bayesian graphical model that enables the
statistical evaluation of a candidate CNP. Whatever prop-
erty or aspect of the candidate CNP that is assumed to be
associated with disease can then be specifically observed
through stochastic elements of the graphical model or the
construction of a logical node. A logical node, in this con-
text, means one whose value or state is determined by the
states of its parental variables. We have implemented this
model in WinBUGS, to analyze nuclear families. The dis-
tinctive feature of our implemented method is that the
multiple (or repeated) raw assessments of individual CNP
phenotype are used directly, rather than use of a single
summary measure or an integer value assigned by an al-
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Figure 1. Model represented as a directed acyclic graph. Ovals represent stochastic nodes, rectangles represent logical nodes, and
shaded rectangles summarize repeated structures.

gorithm. We assume that the CNP phenotype results from
the sum of two independently inherited alleles and that
each allele consists of a discrete number of repeats (which
may include a null allele). This, of course, may not be true
for all CNPs, since the repeated homologous sequence
may be located at multiple sites throughout the genome.

The presented implementation has been constructed
to evaluate the candidate CNP CCL3L1 isoform (MIM
601395), which contains a segment that is present in mul-
tiple copies. The variation in copy number in this gene
segment has been well studied. Within populations, lower
copy number is associated with both risk of HIV-1 infec-
tion and more rapid progression to AIDS8 and with re-
duced risk of Kawasaki disease.9 Variation in copy number
within this gene may affect susceptibility to or progression
of other diseases of the autoimmune and inflammatory
response systems, such as asthma. This polymorphism has
therefore been investigated as a candidate CNP in a series
of 201 nuclear families ascertained because of the presence
of at least two affected offspring with asthma.

The graphical model is presented in figure 1. In foun-
ders, copy-number alleles are assumed to be sampled
from a Poisson distribution, where the rate, l, may be
different in each population (as observed by Gonzalez et
al.8 for this same polymorphism). Therefore, the distri-
bution of copy-number phenotype (the sum of the two
allele lengths) in the population will follow a Poisson dis-
tribution with rate 2l. In this specific implementation,
of interest is whether there is a Mendelian-transmission
distortion, in which the lighter allele is transmitted to
affected offspring.

The various nodes in figure 1 represent the following.

li: Poisson rate, used in prior population-allele frequency
distribution in subpopulation i.

(and ): Allele l for the mother (and father) in nu-(m) (f)a aijl ijl

clear family j in population i.
(and ): The “lighter” of the two alleles in the(m) (f)g gij1 ij1

mother (and father).
(and ): The “heavier” of the same two alleles.(m) (f)g gij2 ij2

ta (and tu): The probability that a parent transmits the
heavier allele to affected (and unaffected) offspring.

(and ): The allele inherited by affected offspring(a ) (a )k ka aij1 ij2

ak from the mother (and father) of family j in population
i.

(and ): The allele inherited by unaffected offspring(u ) (u )k ka aij1 ij2

uk from the mother (and father) of family j in population
i.

(and ): CNP-phenotype assay replicate r for the(m) (f)f fijr ijr

mother (and father) of family j in population i.
(and ): CNP-phenotype assay replicate r for af-(a ) (u )k kf fijr ijr

fected (and unaffected) offspring k in family j in pop-
ulation i.

j2: Copy-number–phenotype assay variance.
(and ): Number of replicate copy-number–phe-(m) (f)rep repij ij

notype assays for mother (and father) in family j in
population i.

(and ): Number of replicate copy-number–phe-(a ) (u )k krep repij ij

notype assays for affected (and unaffected) offspring.
naij (and nuij): Number of affected (and unaffected) off-

spring in family j in population i.

This formulation declares the basic model. It is straight-
forward to extend it to include slight variations or to ex-
amine other hypotheses, such as copy-number–threshold
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Figure 2. One selected U.K. family. Blackened symbols represent
individuals affected with asthma. The column of numbers below
each individual lists the replicate CNP assay measure for each. The
number to the left of the column represents the integer (closest
to the mean) assignment. The numbers to the right in parentheses
reflect the most likely (in larger, bold type) and the next most
likely underlying phenotype taken from the marginal posterior
probability for each individual.

Table 1. Details of Nuclear Family Size and
Distribution of Affected Siblings in the Two
Samples

Family Origin

No. of Families with

No. of Affected
Siblings

No. of Unaffected
Siblings

2 3 4 0 1 2

United Kingdom 84 14 1 81 15 3
Greece 96 6 0 98 4 0

effects. Adding further logical nodes enables the estima-
tion of identity-by-descent (IBD) sharing probabilities.

The true copy-number phenotype for a single individual
is determined by the sum of their two inherited discrete
allele lengths. Therefore, the observed CNP phenotype

is assumed to be a normally distributed variable withfijr

mean and variance j2. In practice, the phenotypea � aij1 ij2

must be treated as a censored variable, since this assay is
truncated at zero. When null alleles exist, some individ-
uals will be effectively homozygous for the null allele, and
the assay may yield small positive values. Any copy-num-
ber assay replicate returning a zero is treated as a censored
observation with true value !0.

Founder alleles are sampled from the Poisson distribu-
tion, and the genotype is then configured so the first allele
is the lighter (if heterozygous). An inheritance vector then
identifies which of the two configured parental alleles has
been transmitted to offspring. If the gene polymorphism
is not associated with disease, you would expect to see
equally likely transmission of light or heavy alleles, con-
sistent with Mendelian segregation. This configurationen-
ables the transmission parameter to be estimated and,
hence, the alternative hypothesis to be tested. The graph-
ical model distinguishes between affected and unaffected
offspring, so unaffected offspring are used only to assist
in the inference of parental genotypes.

Nuclear families from two European populations, rep-
resenting a subset of a larger multicenter study,10 were
collected from centers in Sheffield, United Kingdom, and
in Thessaloniki, Greece. The U.K. families include a small
number of unaffected offspring (table 1). The estimation
of copy-number phenotype was determined by quanti-
tative real-time PCR, by use of a previously validated tech-
nique.11 The copy number was quantified at least twice;
if a clear, discrete copy-number count was not achieved,
further replicates were generated until the mean value ap-
proached an integer value. A similar protocol was followed
by Gonzalez et al.8 This procedure was employed for every
member of the nuclear family. Figure 2 shows a selected
U.K. pedigree illustrating the variable number of copy-
number assays performed within one family. This selected
pedigree also provides an example of how assigning the
integer closest to the mean, as outlined above, can lead
to Mendelian inconsistencies. In this case, the inconsis-
tency was able to be resolved if, for example, the father’s
phenotype was 3 or the unaffected offspring’s phenotype

was 0, 2, 4, or 6. Assigning phenotype by the integer clos-
est to the mean resulted in Mendelian inconsistencies de-
tected in 20 of the 201 families. Obviously, some incon-
sistencies might be expected to be due to nonpaternity,
but that cause can be excluded in this series, since all
families were screened for nonpaternity before their use
in genomewide linkage studies.10

The graphical model was implemented as a WinBUGS
procedure (CNPrep) allowing for up to six replicate assays
per individual. The censoring function was applied only
to the first two assay results, since, for this assay at least,
a null-copy phenotype was easy to classify. Because of this
declared experimental design, missing replicate assays
were assumed to be ”missing at random.”

The combined use of inheritance vectors, which point
to the alleles transmitted, and the quantitative estimate
of the true copy-number phenotype means that the Mar-
kov-chain iterations do not suffer from the problem of
reducibility often experienced in Markov-chain pedigree
analysis.12 The assumption that the phenotype is mea-
sured with error allows the founder alleles to be sampled
from the full prior distribution. Although some founder
genotypes are extremely unlikely, they are not impossible.

The implemented procedure needed a long burn-in
but did not appear to be sensitive to starting values, and
convergence was assessed using standard diagnostics.13

Multiple runs with three simultaneous sampling chains
showed no evidence of reducibility or convergence to local
maxima. There is strong evidence that the allele distri-
butions in the Greek and U.K. populations are different
(table 2), but there is only suggestive evidence of a trans-
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Table 2. Parameter Estimates Generated by
WinBUGS Analysis

Parametera Mean 2.5% CI 97.5% CI

Greek Poisson rate 1.08 .98 1.18
U.K. Poisson rate 1.32 1.21 1.44
Transmission probabilityb .47 .43 .53
z0 .22 .17 .27
z1 .50 .44 .57
z2 .27 .22 .32

a The terms , , and represent the probabilities thatz z z0 1 2

a pair of affected siblings share 0, 1, or 2 alleles IBD.
b Probability of transmission of the heavy allele to af-

fected offspring by heterozygote.

mission distortion favoring transmission of the lighter al-
lele to affected offspring ( [95% CI 0.43–0.53]).t̂ p 0.47a

A weak tendency for affected sibs to share two alleles IBD
was also observed.

Figure 2 shows the most likely distribution of copy-
number phenotype for each person in the selected pedi-
gree, based on the results of the WinBUGS procedure (this
is shown by the bold number in parentheses on the right
of the column of repeated values). These values represent
the most (and next most) likely underlying integer phe-
notype for each individual taken from the posterior dis-
tribution for each person, not the joint distribution for
the whole family.

The graphical model outlined in figure 1 constrains the
genotype distribution within the pedigree to be consistent
with Mendelian segregation. It does not allow for muta-
tion at the CNP, nor does it allow a CNP phenotype to be
the “sum” of allele lengths at several unlinked loci. Mod-
ifications to incorporate these facets are straightforward,
but more prior knowledge or additional data sets allowing
characterization through hierarchical modeling would
be needed. Currently, available data suggest that CNPs
are generally stably inherited (i.e., consistent with a high
heritability),14 but more work is needed to distinguish
between technical artifacts, high error rates, and high
mutability.

Further refinement of the model would include explo-
ration of appropriate prior distributions for allele fre-
quencies and models allowing assay variance to be a func-
tion of the underlying true copy-number phenotype. Our
use of the Poisson as the prior for allele frequencies has
the benefit that a single parameter defines the distribution;
however, for the investigated CNP CCL3L1, this was not
entirely justified, since the range of allele lengths observed
was wider than a Poisson would predict. One effect of the
Poisson assumption is illustrated in figure 2. Since the
Poisson rate for the U.K. set finds shorter alleles more
likely, the father is therefore more likely to have pheno-
type 3 than phenotype 4, and this resolves the potential
Mendelian inconsistency highlighted before between the
father and unaffected offspring.

When studying related individuals for segregation anal-
ysis of candidate loci, it is not only possible but also ben-

eficial to include raw, possibly replicate, genotype or phe-
notype measurements. It is beneficial for two reasons: (1)
it is more efficient to incorporate the error model into the
analysis and to use the raw data directly than to take sum-
mary assignments and compose an error function that
relates to the summary assignment and the underlying
true value, and, (2) although the true Mendelian system
is assumed to be discrete, if the quantitative measures can
be assumed to be drawn from continuous distributions,
then this facilitates the use of a Markov chain–Monte
Carlo (MCMC) approach,12 which allows a general graph-
ical model to form the basis for any genetic hypothesis to
be tested. Our approach is illustrated through a simple
example implemented in WinBUGS. WinBUGS was cho-
sen because of its favorable environment for flexible
model development, but many alternative Bayesian tech-
niques could be used equally well. It should be possible
to incorporate this integrated genetic-marker model into
existing genetic-analysis tools that use MCMC or hidden
Markov models, such as MORGAN or MERLIN, thereby
taking advantage of their many other algorithmic and
computational features.

This approach and the realization that presence of CNVs
can be detected through SNP-driven technology suggest
that the model can be extended to SNP analysis. In genetic
association studies, SNPs have become the marker of
choice15 because of their high genomic density and tech-
nical advantages over the more polymorphic but less fre-
quent and technically more difficult microsatellites. In
spite of their technical advantages, not all discovered SNPs
meet required quality-control (QC) standards, and some
genomic regions are relatively sparsely covered by SNPs.16

It is now clear that some of the QC failures may be due
to the presence of copy-number–variable regions.2,17 This
makes it desirable to work toward models able to simul-
taneously analyze SNP and CNP observations together, to
more precisely identify the segregation of genetic material
through pedigrees, and hence to formally assess the dis-
ease risk. A recent genetic linkage analysis that mapped
autism risk loci18 took advantage of the information on
individual CNV status contained in the SNP arrays. Be-
cause of the current lack of both integrated statistical
methods and firm knowledge of suitable and reliable in-
heritance models for CNVs, the patterns of CNV clustering
were used to subclassify families rather than to inform the
genetic linkage process. The analysis of further detailed
experimental data such as those reported in the linkage
analysis18 is required to ensure appropriate models inte-
grating the effect of CNP on neighboring SNPs.

Genomewide case-control association studies are an ef-
ficient way to screen large numbers of genetic loci for
association with multifactorial disease. Candidate regions
suggested by the genomewide studies may be followed up
in population-based family resources, since they provide
a powerful framework to quantify gene-gene and gene-
environment interactions. CNPs present a promising class
of candidate loci, but the error associated with measuring
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the population-based variation may be large when assign-
ing phenotype to individuals, requiring consideration of
the error or the assignment within the statistical analysis.
We have outlined an efficient approach to do this, using
a Bayesian graphical model for candidate-gene segregation
analysis that jointly models the relationship between (sin-
gle or replicate) quantification assays and true underlying
genotype and/or phenotype. As we have demonstrated,
this basic model is easily adapted to suit the nature of the
data studied and the hypothesis in question.
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Web Resources

The URLs for data presented herein are as follows:

CNPrep, http://www.dawn-teare.staff.shef.ac.uk/
Database of Genomic Variants, http://projects.tcag.ca/variation/
LINKAGE, http://linkage.rockefeller.edu/soft/linkage/
MERLIN, http://www.sph.umich.edu/csg/abecasis/Merlin/
MORGAN, http://www.stat.washington.edu/thompson/Genepi/

MORGAN/
Online Mendelian Inheritance in Man (OMIM), http://www.ncbi

.nih.gov/Omim/ (for CCL3L1 isoform)
PAP Pedigree Analysis Package, http://hasstedt.genetics.utah.edu/
WinBUGS, http://www.mrc-bsu.cam.ac.uk/bugs/
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